Event Nugget Detection with Forward-Backward Recurrent Neural Networks

نویسندگان

  • Reza Ghaeini
  • Xiaoli Z. Fern
  • Liang Huang
  • Prasad Tadepalli
چکیده

Traditional event detection methods heavily rely on manually engineered rich features. Recent deep learning approaches alleviate this problem by automatic feature engineering. But such efforts, like tradition methods, have so far only focused on single-token event mentions, whereas in practice events can also be a phrase. We instead use forward-backward recurrent neural networks (FBRNNs) to detect events that can be either words or phrases. To the best our knowledge, this is one of the first efforts to handle multi-word events and also the first attempt to use RNNs for event detection. Experimental results demonstrate that FBRNN is competitive with the state-of-the-art methods on the ACE 2005 and the Rich ERE 2015 event detection tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Event Nugget Detection, Classification and Coreference Resolution using Deep Neural Networks and Gradient Boosted Decision Trees

For the shared task of event nugget detection at TAC 2015 we trained a deep feed forward network achieving an official F1-score of 65.31% for plain annotations, 55.56% for event mention type and 49.16% for the realis value. For the task of Event Coreference Resolution we prototyped a simple baseline using Gradient Boosted Decision Trees achieving an overall average CoNLL score of 70.02%. Our co...

متن کامل

An Autoassociative Neural Network Model of Paired-Associate Learning

Hebbian heteroassociative learning is inherently asymmetric. Storing a forward association, from item A to item B, enables recall of B (given A), but does not permit recall of A (given B). Recurrent networks can solve this problem by associating A to B and B back to A. In these recurrent networks, the forward and backward associations can be differentially weighted to account for asymmetries in...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Fault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier

Microgrids have played an important role in distribution networks during recent years.  DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...

متن کامل

Event Nugget Detection Task : UMBC systems

This paper described our Event Nugget Detection system that we submitted to the TAC KBP 2016 Event Track. We sent out two runs; UMBC1 and UMBC2. UMBC1 is a sentencelevel classification system based on Convolution Neural Network and applied the probability to select a word as an event nugget. UMBC2 is the classification model trained from our features using Weka and filtered out low confidence p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.05672  شماره 

صفحات  -

تاریخ انتشار 2016